
ER’2018 – tutorial 1

Behavior-derived Reuse:
Conceptual Foundations and Practical

Tools for Increasing Software Reuse

Iris Reinhartz-Berger & Anna Zamansky

University of Haifa, Israel

ER’2018 - tutorial 1

Outline

Part A: Similarity and reuse – terminologies and background

 Software Reuse: clone-and-own and SPLE

 Similarity: clone types and variability mechanisms

 Motivation: the renting applications example

Part B: The behavior-derived reuse approach and the VarMeR tool

 The notion of behavior

 Behavior-derived similarity analysis

 The VarMeR tool

Part C: Discussion

 Possible applications & future research

 Questions & Answers

Part A: Similarity and reuse –

terminology and background

 Software Reuse: clone-and-own and SPLE

 Similarity: clone types and variability mechanisms

 Motivation for behavior-derived reuse: the renting

applications example

Similarity Reuse

ER’2018 - tutorial 1

Software Reuse

 Software reuse – using existing software artifacts (such as

requirements, design models, implementation/code, test

cases, and so on) in order to produce new software.

 Software reuse has the potential to:

 Increase productivity

 Reduce costs and time-to-market

 Improve software quality

 Two types of reuse are:

 Ad-hoc: clone-and-own

 Systematic: software product line engineering (SPLE)

ER’2018 - tutorial 1

Software Reuse: Clone-and-Own

 Essence: copying an existing artifact and adapting it to

the requirements of the new software

 Advantages:

 simple to apply

 fast and immediate for addressing changes in requirements

 Drawbacks:

 high maintenance costs

 bug propagation

 negative impact on design and understandability

 strain on resources

ER’2018 - tutorial 1

Software Reuse: SPLE

 Essence: managing artifacts at two levels

 Domain engineering – core assets management

 Application engineering – product artifacts creation

 Advantages:

 Effective & efficient when developing similar software
products

 Enable fast response to new opportunities and changing
markets

 Drawbacks:

 Profitability over time - high up-front investment in the
development of core assets

 increased complexity and intense negotiation

ER’2018 - tutorial 1

Software Reuse: ISO/IEC 26520 for SPLE

ER’2018 - tutorial 1

Similarity as a key concept for Reuse

 Observations:

 High similarity decreases the amount and complexity of

adaptation

 Low similarity may complicate reuse

 Applications:

 Clone detection techniques use similarity metrics (mainly

syntactic and semantic) for identifying similar artifacts, or

artifacts that originate from the same source

 SPLE methods use similarity analysis techniques and

variability mechanisms to extractively or reactively create

product lines and support systematic reuse

ER’2018 - tutorial 1

Similarity clone detection techniques, Rattan et.al (2013)

Type of clones Description

Type 1 (exact clones) Identical except for variations in white space and

comments

Type 2 (renamed/

parameterized clones)

Structurally/syntactically similar except for changes

in identifiers, literals, types, layout and comments

Type 3 (near miss clones) “Copies” with further modifications like statement

insertions/deletions in addition to changes in

identifiers, literals, types and layouts

Type 4 (semantic clones) Functionally similar without being textually similar

Structural clones Patterns of interrelated classes emerging from

design and analysis space at architecture level

Function clones Limited to the granularity of a function/method/

procedure

Model based clones For graphical languages which replace

the code as core artifacts for system development

ER’2018 - tutorial 1

Similarity variability mechanism, Bachmann & Clements (2005)

 Variability mechanisms are techniques used to encapsulate the
variable parts and to provide appropriate support for creating
product artifacts.

 The asset developer has to decide what variability mechanisms to choose
in order to increase potential reuse

 Several catalogs of variability mechanisms have been proposed:

 Jacobson et al. (1997)

 Gacek & Anastasopoules (2001)

 Muthig & Patzke (2002)

 Svahnberg et al. (2005)

 Bachmann & Clements (2005)

 Becker et al. (2007)

 Vom Brocke (2007)

ER’2018 - tutorial 1

Similarity variability mechanism, Bachmann & Clements (2005)

Variability mechanism Description

Configurators assembling whole product assets by putting together

pieces that are core assets

Parameters keeping several small variation points for each variable

feature

Inheritance defining classes that are used in the product and inherited

from generic classes defined for the product line

Component substitution selecting from existing variants and inserting into core

assets

Plug-ins selecting and inserting at runtime

Templates filling in product-specific parts in a generic body

Generators producing components based on specifications

Aspects selecting and inserting either at precompile or compile

time

Runtime conditionals specifying (at runtime) under which condition a core asset

is included in a product

ER’2018 - tutorial 1

Similarity polymorphism-inspired variability mechanism

 Polymorphism in OOP - refers to an ability to process

objects differently depending on their data type or class.

 Types of polymorphism:

 Parametric - similar behaviors

 Subtyping - refined or extended behaviors

 Overloading - different behaviors with similar

interfaces

ER’2018 - tutorial 1

Motivation the renting applications example

WeWork RentCom FindRoommate

Renting objects Offices Houses Rooms in a house

Renting

subjects

Clients, an office can

be rented to multiple

clients

Clients, an house

can be rented to

multiple clients

Roommate, a room

can be rented to a

single client

Rental inclusion Amenities Amenities Facilities which

have statuses that

are checked on

return

Rental prices Per month Per year Per week

Rental

constraints

According to minimal

and maximal numbers

of employees

According to the

number of beds

According to gender

preference

Rental status empty (not rented),

partial (can be rented

to more clients), or full

Implicit (satisfying

rental constraints)

free, rented

ER’2018 - tutorial 1

WeWork

WeWork is a global network of workspaces where

companies and people grow together. We transform

buildings into dynamic environments for creativity,

focus, and connection. More than just the best place to

work, though, this is a movement toward humanizing

work. We believe that CEOs can help each other, offices

can use the comforts of home, and we can all look

forward to Monday if we find real meaning in what we do.

ER’2018 - tutorial 1

RentCom

ER’2018 - tutorial 1

FindRoommate

ER’2018 - tutorial 1

WeWork-inspired Class Diagram

ER’2018 - tutorial 1

RentCom-inspired Class Diagram

ER’2018 - tutorial 1

FindRommate-inspired Class Diagram

ER’2018 - tutorial 1

Motivation BUT4Reuse - Bottom-Up Technologies for Reuse

 Provides a unified framework for mining software artefact

variants (Martinez et al., 2015)

 An eclipse plug-in

 Supports different artifact types

 Java, C, EMF Models, Textual files, File structures, JSON and

CSV files, …

 For C and Java source code, similarity is based on:

 Feature Structure Tree (FST) positions

 Names comparison

 Site: https://github.com/but4reuse/but4reuse/wiki

https://github.com/but4reuse/but4reuse/wiki

ER’2018 - tutorial 1

Motivation BUT4Reuse - Bottom-Up Technologies for Reuse

FindRoommate RentCom WeWork

House &

House Type

Amenity &

Client

ER’2018 - tutorial 1

Motivation BUT4Reuse - Bottom-Up Technologies for Reuse

 What about Client & Roommate?

 What about Amenity & Facility?

 What about Room, House & Office?

 They are all rented and returned

 They all require check availability

 They all handle amenities/facilities

 They are rented to clients/roommates

 They have common attributes, such as area and price

Part B: The behavior-derived reuse

approach and the VarMeR tool

 The notion of behavior

 Behavior-derived similarity analysis

 The VarMeR tool

ER’2018 - tutorial 1

The Notion of Behavior

 (Software) Systems may differ in their implementation

and yet provide similar functionality.

 Behavior refers to the (intended) functionality of the system

 A behavior is a transformation from an initial state to a

final state due to some external event. It is represented

as a triplet (S1, e, S*), where:

 S1 is the initial state of the system before the behavior

occurs

 e is an external event that triggers the behavior

 S* is the final state of the system after the behavior occurs

ER’2018 - tutorial 1

Behavior-derived Similarity Analysis

P1

P2

Extract
Behaviors Products

representations

Compare
Behaviors

Variability
mechanisms

Similar elements

Analyze
Variability

Reuse
Recommendations

Ontological
foundation

Similarity
measures

Object-oriented

code in Java

ER’2018 - tutorial 1

Product Representation

 Behavior descriptors

 Shallow descriptor – represents the behavior’s
interface

Shallow.parameters = {(parameter, type)}

Shallow.returned = {(operationName, returnedType)}

 Deep descriptor – represents the transformation the
behavior performs on state variables

Deep.attUsed = {(att, type) | att is an attribute used
(read) in the operation}

Deep.attModified = {(att, type) | att is an attribute
modified (written) in the operation}

ER’2018 - tutorial 1

Product Representation

 A product is represented as a set of behaviors, such

that for each behavior

 S1 = Shallow.parameters Deep.attUsed

 S* = Shallow.returned Deep.attModified

(currently e = operationName)

ER’2018 - tutorial 1

Example of Product Representation

 WeWork = (Office.CheckAvailability, Office.Rent, Office.EndRent,

Office.AddAmenity, Office.RemoveAmenity, …)

 Rent behavior of office:

 Shallow.parameters

 Shallow.returned

 Deep.attUsed

 Deep.attModified

public boolean checkAvailability() {
return ((status !=

OfficeStatus.full) &&
(clients.size() <

maxEmployees));
}

public void setStatus
(OfficeStatus newStatus) {

this.status = newStatus;
}

ER’2018 - tutorial 1

Example of Product Representation

 WeWork = (Office.CheckAvailability, Office.Rent, Office.EndRent,

Office.AddAmenity, Office.RemoveAmenity, …)

 Rent behavior of office:

 Shallow.parameters: (c, Client)

 Shallow.returned: (rent, Boolean)

 Deep.attUsed: (clients, ArrayList), (minEmployees, int), (maxEmployees, int),

(status, OfficeStatus), (partial, OfficeStatus), (full, OfficeStatus)

 Deep.attModified: (clients, ArrayList), (status, OfficeStatus)

ER’2018 - tutorial 1

Behavior-derived Similarity Analysis

P1

P2

Extract
Behaviors Products

representations

Compare
Behaviors

Variability
mechanisms

Similar elements

Analyze
Variability

Reuse
Recommendations

Ontological
foundation

Similarity
measures

Syntactic, semantic,

schematic, etc.

ER’2018 - tutorial 1

Similarity Measures

 Different Similarity measures can be used, e.g., semantic

similarity

 Semantic (text) similarity measures are commonly

classified as

 Corpus-based measures identify the degree of

similarity based on information derived from large

corpora

 Knowledge-based measures use information drawn

from semantic networks

ER’2018 - tutorial 1

Example of Similarity Calculation
S
h
a
ll
o
w parameters {(c, WeWork.Client)} {(c, RentCom.Client)}

returned {(rent, java.lang.Boolean)} {(rent, java.lang.Boolean)}

D
e
e
p

attUsed {(clients, java.util.ArrayList);

(minEmployees, java.lang.Integer);

(maxEmployees, java.lang.Integer);

(status, WeWork.OfficeStatus)}

(partial, WeWork.OfficeStatus)}

(full, WeWork.OfficeStatus)}

{(clients, java.util.ArrayList);

(beds, java.lang.Integer}

attModified {(clients, java.util.ArrayList);

(status, WeWork.OfficeStatus)}

{(clients, java.util.ArrayList)}

Possible types

of mappings

ER’2018 - tutorial 1

Behavior-derived Similarity Analysis

P1

P2

Extract
Behaviors Products

representations

Compare
Behaviors

Variability
mechanisms

Similar elements

Analyze
Variability

Reuse
Recommendations

Ontological
foundation

Similarity
measures

Polymorphism types:

parametric, subtyping,

overloading

ER’2018 - tutorial 1

Similarity of Deep and Shallow behaviors

Mapping Type Description Visualization

USE covered and single-mapped

REFINEMENT multi-mapped

EXTENSION not covered

ER’2018 - tutorial 1

Recommended Polymorphism-Inspired Mechanisms

Shallow Deep Description Recommendation

USE USE Both interfaces and transformations are

similar

Parametric

USE REF Interfaces are similar and transformations

are refined

Subtyping

USE EXT Interfaces are similar and transformations

are extended

Subtyping

USE REF-EXT Interfaces are similar and transformations

are both refined and extended

Subtyping

USE NONE Interfaces are similar and transformations

are different

Overloading

ER’2018 - tutorial 1

ER’2018 - tutorial 1

The VarMeR Tool

https://sites.google.com

/is.haifa.ac.il/varmer/

Part C: Discussion

 Possible applications & future research

 Questions & Answers

ER’2018 - tutorial 1

Product line ability decision support

 Question: How to assess the ability of a set of products to

form a product line?

 ‘Product line ability’ - the ability of a set of products to

form a product line (Berger et al. 2014)

 Bottom-up: constructing a core asset out of existing

product components

 Top-down: adapting existing products and creating new

ones based on the generated core assets

ER’2018 - tutorial 1

 Suggested metrics assume high similarity of

representations, mainly implementations or

architecture models (Berger et al. 2014)

40

Name Formula Description

Size of

commonality (SoC)

SoC =

| 𝑖=1..𝑛𝐶𝑝𝑖,𝑟|+| 𝑖=1..𝑛𝐶𝑝𝑖,𝑜|

Number of identical

components among p1,…,pn

Product related

reusability (PrR)
PrRi =

𝑆𝑜𝐶

|𝐶𝑝𝑖,𝑟∪𝐶𝑝𝑖,𝑜|
Ratio relating the size of

commonality for a specific

product pi

Product line ability decision support

ER’2018 - tutorial 1

 VarMeR suggests more robust product line-ability

analysis, which:

 takes into account the behaviors of artifacts,

rather than solely their implementations

 allows for a more refined evaluation of the reuse

effort, which reflects the possibilities to adopt

specific reuse practices

Product line ability decision support

ER’2018 - tutorial 1

42

More
products?

1

Behavior similarity

calculation

2

Similarity degree

measurement

3

Product-related

variability degree

measurement

yes

no
Exclude

products?

yes

no

Set of

products

Similarity

graph

Similarity

mapping

Potential

core assets

Minimal number

of products*

Selected core

assets**

Product-related

variability degree

* For defining a core asset
** A subset of the potential core assets obtained in step 2

Step

Object

Decision?

Control
flow

Data
flow

Legend:

Product line ability decision support

ER’2018 - tutorial 1

43

parametricMerge 1 Merge 2

Quick 1Quick 2

Quick 3
Optimized

Quick 3

overloading

parametric parametric

parametric

overloading

Merge 3

subtyping

subtyping

subtyping

* Node’s Color represents the product

Product line ability decision support

ER’2018 - tutorial 1

44

 An m-colored parametric asset is

a subgraph of a similarity graph

representing at least m products

(colors) where each two nodes are

connected with a parametric edge

 An m-color behavioral similarity

degree measures how “close” a

given similarity m-colored sub-graph

is to being an m-colored parametric

asset.

Product line ability decision support

ER’2018 - tutorial 1

45

parametricMerge 1 Merge 2

Quick 1Quick 2

Quick 3
Optimized

Quick 3

overloading

parametric parametric

parametric

overloading

Merge 3

subtyping

subtyping

subtyping

3-color behavioral

similarity degree

(1, 0, 0)

2-color behavioral

similarity degree

(0.33, 0, 0.67)

Product line ability decision support

ER’2018 - tutorial 1

46

 An m-color product-related variability

degree measures the difference between

each product and the potential m-color

core assets, as captured by the m-color

behavioral similarity degree

 Intuitively, greater coverage of vertices

indicates higher product line-ability.

Product line ability decision support

ER’2018 - tutorial 1

47

parametricMerge 1 Merge 2

Quick 1Quick 2

Quick 3
Optimized

Quick 3

overloading

parametric parametric

parametric

overloading

Merge 3

subtyping

subtyping

subtyping

2-color product-related variability degree with respect to {G1, G2}

(1, 0, 1, 0)(1, 0, 0.5, 0)(0.33, 0, 0, 0.67)

Product line ability decision support

ER’2018 - tutorial 1

A proactive reuse framework

S1 S*
e

Searching for Core Assets

Extracting Behavior

R
e
c
o
m

m
e
n
d
in

g

ER’2018 - tutorial 1

A proactive reuse framework

 Challenges:

 Comparison across projects

 Comparison across (artifact) types

 Relevant recommendations at early stages of

development

 Querying and searching the core assets repository

 (Semi-) automatic application of recommendations

 Easy integration into the workflow of developers

ER’2018 - tutorial 1

 Evaluation
 With students for improving reuse educating and training

capabilities

 With practitioners for improving software design and development

skills

 Extension of the approach

 To additional variability mechanisms: parameterization,

configuration, analogy, and others

 To support the application of recommendations in both directions

 Bottom-up to create core assets

 Top-down to generate and customize product artifacts

Additional future research directions

ER’2018 – tutorial 1

Additional feedback (questions, comments, suggestions

for collaboration, etc.) can be directed to:

Iris Reinhartz-Berger iris@is.haifa.ac.il

Anna Zamansky annazam@is.haifa.ac.il

mailto:iris@is.haifa.ac.il
mailto:annazam@is.haifa.ac.il

ER’2018 - tutorial 1

Own References

 I. Reinhartz-Berger, A. Zamansky. A Behavior-based Framework for Assessing

Product Line-Ability. CAiSE 2018: 571-586.

 I. Reinhartz-Berger, Anna Zamansky. VarMeR - A Variability Mechanisms

Recommender for Software Artifacts. CAiSE-Forum-DC2017, 57-64.

 A. Zamansky, I. Reinhartz-Berger. Visualizing Code Variabilities for Supporting

Reuse Decisions. SCME 2017.

 I. Reinhartz-Berger, A. Zamansky, Y. Wand, An Ontological Approach for

Identifying Variants: The Cases of Specialization and Template Instantiation,

ER’16.

 I. Reinhartz-Berger, A. Zamansky and Y. Wand. Taming Software Variability:

Ontological Foundations of Variability Mechanisms, ER’15.

 I. Reinhartz-Berger, A. Zamansky and M. Kemelman. Analyzing Variability of

Cloned Artifacts: Formal Framework and its Application to Requirements.

EMMSAD’15.

ER’2018 - tutorial 1

Additional References mentioned in the presentation

 Clone detection:

 Rattan, D., Bhatia, R., & Singh, M. (2013). Software clone detection: A systematic

review. Information and Software Technology, 55(7), 1165-1199.

 Variability mechanisms:

 Bachmann, F., & Clements, P. C. (2005). Variability in software product lines (No.

CMU/SEI-2005-TR-012). CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE

ENGINEERING INST.

 Gacek, C., & Anastasopoules, M. (2001, May). Implementing product line variabilities.

In ACM SIGSOFT Software Engineering Notes (Vol. 26, No. 3, pp. 109-117). ACM.

 I. Jacobson, M. Griss, P. Jonsson. (1997). Software reuse: architecture process and

organization for business success. 1. ed. Boston: Addison-Wesley, p. 528.

 Svahnberg, M., Van Gurp, J., & Bosch, J. (2005). A taxonomy of variability realization

techniques. Software: Practice and experience, 35(8), 705-754.

 vom Brocke, J. (2007). Design principles for reference modeling: reusing information

models by means of aggregation, specialisation, instantiation, and analogy.

In Reference modeling for business systems analysis (pp. 47-76). IGI Global.

ER’2018 - tutorial 1

Additional References mentioned in the presentation

 Variability mechanisms (cont.):
 Becker, J., Delfmann, P., & Knackstedt, R. (2007). Adaptive reference

modeling: Integrating configurative and generic adaptation techniques for

information models. In Reference modeling (pp. 27-58). Physica-Verlag HD.

 Bachmann, F., & Clements, P. C. (2005). Variability in software product lines

(No. CMU/SEI-2005-TR-012). CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST.

 Muthig, D., & Patzke, T. (2002, October). Generic implementation of product

line components. In Net. ObjectDays: International Conference on Object-

Oriented and Internet-Based Technologies, Concepts, and Applications for a

Networked World (pp. 313-329). Springer, Berlin, Heidelberg.

 But4Reuse

 Martinez, J., Ziadi, T., Bissyandé, T. F., Klein, J., & Le Traon, Y. (2015, July).

Bottom-up adoption of software product lines: a generic and extensible approach.

In Proceedings of the 19th International Conference on Software Product Line (pp.

101-110). ACM.

